

HY4RES

Presentation Agenda

1. Background

Renewable Energy - Hybrid Systems

Is Renewable Energy Green and Sustainable?

Sustainable Development - Life Cycle Assessment (LCA)

Life Cycle Assessment (LCA) vs Life Cycle Sustainability Assessment (LCSA)

2. Life Cycle Sustainability Assessment

3. Methodology

Phases of LCSA

Stages of Project Life Cycle

Goal and Scope

Inventory Analysis

Impact Assessment – LCA + LCC + SLCA

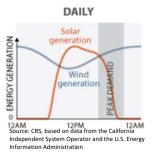
4. Data Analysis and Results

Data Collection

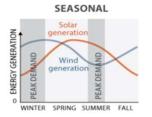
Data Crunching

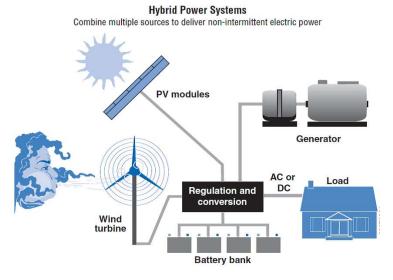
Multi-Criteria Decision Analysis

Interpretation


Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Renewable Energy – Hybrid Systems




Intermittent Renewable Energy Sources (IRES): These sources, such as wind and solar power, produce energy intermittently due to their fluctuating nature.

Depend on External Factors – Wind Speed, Available Sunlight

Variability

Hybrid Renewable Energy Systems – More Reliable and Sustainable as compared to stand-alone systems

Combine multiple sources to deliver Non-Intermittent electric power

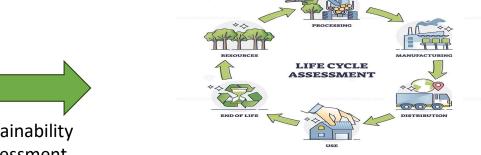
Is Renewable Energy - Green and Sustainable?

Green Washing – presents a significant obstacle to tackling climate change. By misleading the public to believe that a company or other entity is doing more to protect the environment than it is, greenwashing promotes false solutions to the climate crisis that distract from and delay concrete and credible action (UN, 2024).

False Solution ? – Huge Debate on CCS, CCUS, Large-scale Hydro, Nuclear etc.

Greenwashing – the deceptive tactics behind environmental claims | United Nations

Sustainable Development



Brundtland (1987) – Our Common Future defines Sustainable Development as "to meet the current generation's needs without compromising the future generation's ability to meet their own."

Sustainability emphasises the balance between Environmental, economic and Social aspects.

Life Cycle Assessment (LCA)

Sustainability Assessment Tool

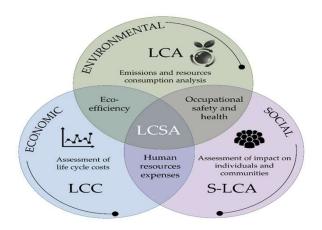
Life cycle assessment represents a comprehensive form of analysis of the cumulative potential environmental burdens for a product or system over a defined lifespan.

Environmental impact indicator – Global Warming Potential (GWP) quantifying greenhouse gas (GHG) emissions measured as a Carbon Footprint (kg CO_2 eq.)

ISO Standards

ISO 14040 LCA Principles and Framework – Goal, Scope, Inventory Analysis ISO 14044 encompass LCA Requirements and Guidelines – Interpretation

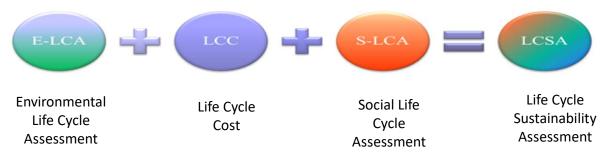
Limitations


Need for a Holistic Approach

LCA covers Sustainability only from the environmental dimension and not as a whole.

Economic viability of the system/ process and its social impact on the stakeholders are two important pillars of Sustainability that LCA lacks.

Life Cycle Sustainability Assessment - LCSA


LCSA covers a broad and complete approach to Sustainability.

It is a methodology that considers all three pillars of Sustainability – Environmental, Economic and Social from a Life Cycle Perspective.

2. Life Cycle Sustainability Assessment - LCSA

The integration of the three pillars of sustainability from a life cycle perspective is referred to as life cycle sustainability assessment (LCSA).

LCSA gives the highest level of assessment among the existing environmental and sustainability.

It encompasses environmental, economic, and social aspects, i.e., the pillars of sustainability, allowing a more holistic understanding of the sustainability of products and processes, which translates into better support for decision-makers.

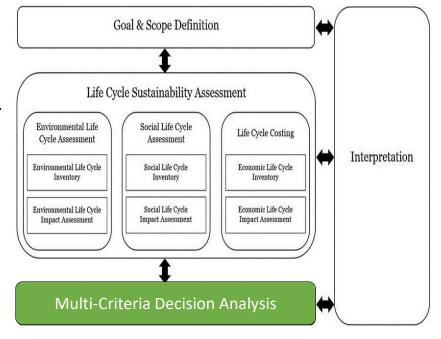
LCSA could be a decisive framework for much-needed Climate Finance and an effective tool against greenwashing and False solutions.

3. Methodology

In literature – UNEP mentions 4 approaches to LCSA

According to (COST Action - CA23157, 2024), LCSA is defined as the combination of environmental LCA (base LCA), life cycle costing (LCC) and social LCA (S-LCA), and should follow the systematic methodology of LCA [1].

As per, ISO 14040 and ISO 14044 standards LCA is carried out in four phases


Phase 1 - Goal and Scope Definition,

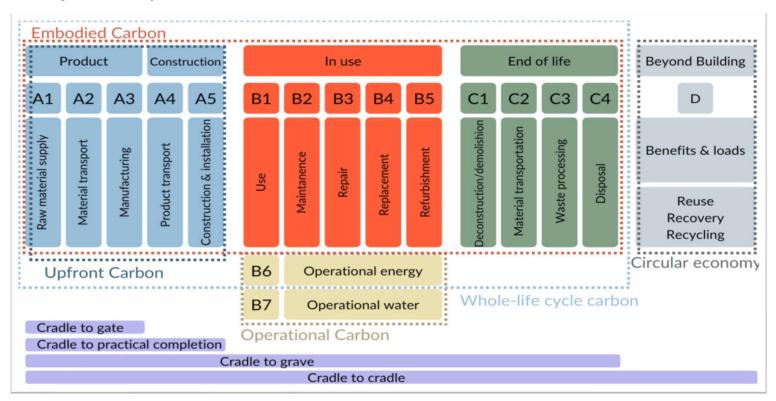
Phase 2 - Life Cycle Inventory (LCI) Analysis,

Phase 3 - Life Cycle Impact Assessment (LCIA)

Phase 4 - Results Interpretation [2, 3].

Integrating the three approaches into a comprehensive LCSA is natural since LCC and S LCA measure the economic and social sustainability dimensions using comparable procedures outlined in ISO 14040 [1].

COST Action CA23157 EUROPEAN NETWORK FOR MULTIPLE VIEW LIFE CYCLE SUSTAINABILITY ASSESSMENT (MultiViewLCSA). (n.d.). COST | European Cooperation in Science and Technology. https://www.cost.eu/actions/CA23157/


Onat, N., Kucukvar, M., Halog, A., & Cloutier, S. (2017). Systems thinking for life cycle sustainability assessment: A review of recent developments, applications, and future perspectives. Sustainability, 9(5), 706. https://doi.org/10.3390/su9050706

UNEP/SETAC LCI, Guidelines for Social Life Cycle Assessment of Products. 2009.

Stages of Project Life Cycle

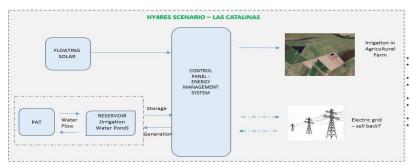
LCSA – Phase 1 - Goal and Scope Definition

Goal and Scope

To study the Direct & Indirect Life Cycle Impacts, to evaluate the Sustainability of Hybrid RE Systems in Irrigation Communities (Valle Inferior Pilot Plant)

This study will analyse the Environmental, Economic and Social Impact of hybrid renewable – Solar and Pump As Turbine (PAT), at the pilot site

LCSA approach will be examined, for the following:

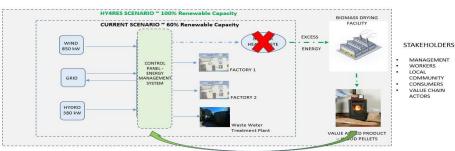

- Comparative data analysis of standalone Renewable Energy Technology (Solar and PAT individually) and Hybrid RE technology for the pilot site.
- o Comparative data analysis of On-grid and Off-grid criteria for the pilot plant (to evaluate the scope of selling back to the grid in case of surplus).
- Comparative data analysis of conventional energy technology (Non-RE grid electricity) and Hybrid RE technology for the pilot plant.
- o Analysis of life cycle cost and energy payback period.

This study will emphasise the cradle-to-grave life cycle approach, and explore the scope for circularity and ecodesign

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

System Boundary - Valle Inferior - Las Catalinas

System boundaries refer to determining which unit processes should be included in the assessed system

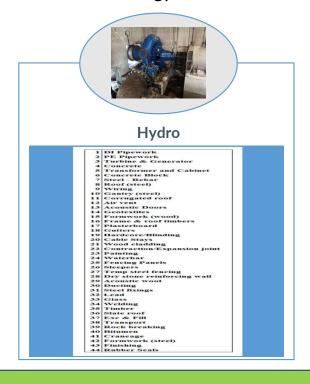


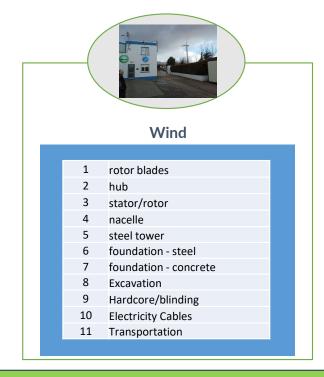
STAKEHOLDERS

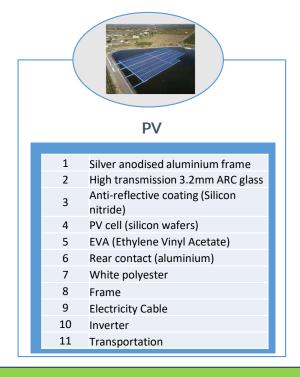
FARMERS
FARM
ORGANISATION:
WORKERS
LOCAL
COMMUNITY
POLICY MAKERS
UNIVERSITY OF
CORDOBA
FERAGUA
EASY HYDRO

System Boundary - Aquaculture - Island Sea Food

System boundaries refer to determining which unit processes should be included in the assessed system


RADLE TO CRADLE - CIRCULAR ECONOMY





Inventory Analysis

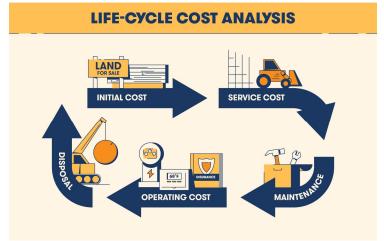
A database will be generated, that will include raw materials, manufacturing, installation and transport processes for each technology.

Impact Assessment – LCSA = LCA + LCC + SLCA

Life Cycle Assessment (LCA) - Environmental Impact Indicators

Impact category	Units	Information						
Global warming potential (GWP)	kg CO2 eq.	GHG emissions contributing to climate change and their effects on ecosystem health, human health and material welfare (measured in equivalents kg CO ₂ eq./kWh).						
Abiotic resource depletion potential (ARDP)	kg Sb eq.	Protection of human welfare, human health and ecosystem health (measurement based on quantity of minerals extracted as a fraction of concentration of global reserves).						
Acidification potential (AP)	kg SO ₂ eq.	Impacts of acidifying substances on soil, surface water, groundwater, organisms, ecosystems and building materials (expressed as equivalent sulphur dioxide concentrations).						
Human toxicity potential (HTP)	kg 1,4- DCBe eq.	Substances that are toxic to human health, calculated with USES-LCA, describing fate, exposure and effects of these substances (equivalent 1,4-dichlorobenzene).						
Fossil resource depletion potential (FRDP)	kg kJ eq.	Depletion of energy as fossil fuel deposits used to generate electricity (measured in equivalent kg kilojoules)						

Goedkoop et al., 2008

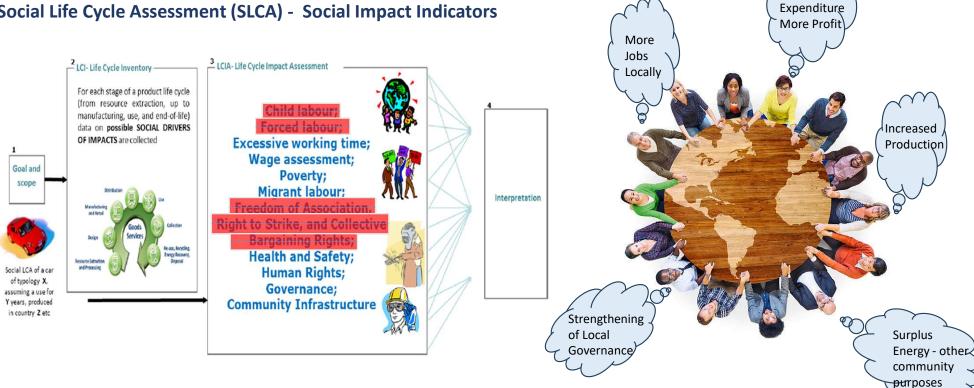


Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Impact Assessment – LCSA = LCA + LCC + SLCA

Life Cycle Cost (LCC) - Economic Impact Indicators

САРЕХ	Base plant costs	Engineering costs					
	base plant costs	Procurement and construction costs					
		Land costs					
	Owner's costs	Additional site costs					
	Owner's costs	Project management					
		Licenses application and regulatory fees					
	Integration Costs						
ОРЕХ		Labour costs					
	Operating costs						
		Waste treatment					
		Fixed maintenance					
	Maintenance costs	Variable maintenance					
	Maintenance costs	Replacements					
		Fuel costs					
	Other operating costs (if	Insurance					
	applicable)	Fuel reprocessing					
		Emissions costs					
End of Life	Decommissioning costs	Disassembling					
		Fuel final storage (if applicable)					



Reduce

Impact Assessment – LCSA = LCA + LCC + SLCA

Social Life Cycle Assessment (SLCA) - Social Impact Indicators

4. Data Analysis and Results

Multi-Criteria
Decision Analysis

Interpretation

	Data Crunch					ınching				interpretation						
В	C	D	E	F	G	Н	1 1 1	J	K	L	M	N	0	P	Q	R
1 Hydro Turbine and Construction Material (Tentative List)									Contractor / Engin	neering / Labour Work			- W			
List Of Material	Quantity		2	Manufacturer Information	Packaging	Cost	Remarks (If any)		S. No.	List Of Material / Detail/ Nature of Work	Number of Labour involved		Total control of the state	Fixed Cost	Recurring Cost (If any)	Remarks (If any)
3 Air Valves									1	Contractor - Labour Work for Laying the Pipes and other Civ	vil Work					
4 Actuator									2	Electrical Work		1				
5 Control Panel	8		3						3	Generator Commissioning				3		
6 Modem									4	Mechanical Commessioning						
7 Telemetry			6)	F 6) i		5	Grid Connections	Ø.	4		(A)		
8 Coupling							i i		6	Electrical Commissioning	ř.	1			ì	
9 Door and Vents			100				j i		7	Design Development and Site Management						
10 Ductile Iron			2						8	Third-Party Costs	· .	1		.0		
11 Gearbox and Coupling									9	Land Owner Costs				.8		
12 Generator									10	Contingency and Prelims (Anything Extra)]		8		
13 Lifting Frame									11	Study/ Report/ Pre Assessment	0			a	8	
14 Pipes			6)	F 6) i		4							
15 Bends							i i									
16 Pressure Switches																
17 Screens			V													
18 Sensors																
19 Sensor Stands																
20 Telephone Line	8 8		8		8 8											
21 Transformer and Switch Gea	r															
22 Turbine				b			j i									
23 Turbine Bearing							ii ii									
24 Valves			100													
25 Weir Plates																

PROJECT PARTNERS

