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Abstract: The modernisation of irrigation networks has enhanced water use efciency but
increased energy demand and costs in agriculture. Energy recovery (ER) is possible by
utilising excess pressure to generate electricity with pumps as turbines (PATs), offering a
cost-effective alternative to traditional turbines. This study assesses the use of PATs in pres-
surised irrigation networks for recovering wasted hydraulic energy, employing the particle
swarm optimisation (PSO) algorithm for PAT sizing based on two single-objective functions.
The analysis focuses on minimising the payback period (MPP) and maximising energy
recovery (MER) at specic excess pressure points (EPPs). A comparative analysis of values
for each EPP and objective function is conducted independently in Sector II of the Canal
del Zújar Irrigation District (CZID) in Extremadura, Spain. A sensitivity analysis on energy
prices and installation costs is also performed to assess socioeconomic trends and volatility,
examining their effects on both objective functions. The optimisation process predicts an
annual ER for an average irrigation season using 2015 data ranging from 9554.86 kWh to
43,992.15 kWh per PATs from theMER function, and payback periods (PPs) from 12.92 years
to 3.01 years for the MPP function. The sensitivity analysis replicated the optimisation for
the years 2022 and 2023, showing potential annual ER of up to 54,963.21 kWh and PPs
ranging from 0.88 to 5.96 years for the year 2022.

Keywords: pump as turbine (PAT); energy recovery in irrigation networks; payback period
(PP); algorithm; particle swarm optimisation (PSO)

1. Introduction
Water distribution systems for irrigation have undergone signicant modernisation in

recent years to improve the efciency of water use [1]. These technological advances have
inevitably been accompanied by an increase in the energy requirements of the agricultural
sector and a consequent increase in energy costs.

Many pressurised water distribution systems have high potential for energy recovery
(ER), as part of their excess of pressure energy is dissipated by regulation valves installed
in the network. However, this excess of energy could be used through a reversal process
to generate electricity [2]. This ER can be achieved by implementing pumps working in
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reverse at excess pressure points (EPPs), such as pumps as turbines (PATs), which offer
a cost-effective alternative, particularly in micro-scale applications, where their cost per
kW is more competitive than that of conventional turbines [3–6]. Furthermore, Ref. [7]
identied the environmental and economic benets of a system incorporating hydropower
(PAT) under different energy demand scenarios in the agricultural sector, demonstrating a
signicant reduction in greenhouse gas emissions and fossil fuel dependency.

However, the choice of these turbines is still an obstacle to the widespread dissem-
ination and implementation of PAT technology [8]. This is mainly due to the lack of
information on the performance and operation of PATs. The fact that the characteristic
curves for reverse operation of commercial pumps are usually not available, together with
the limited detailed ow and pressure records of existing irrigation networks, makes it
difcult to carry out an accurate analysis and implementation of these systems.

The feasibility of these systems is largely dependent on a detailed understanding
of their operation, as well as on the existing conditions at the hydraulic network, as it
is known that the efciency of PATs varies signicantly with ow and head uctuations.
This research line is not new and there have been signicant advances in recent years,
such as the experimental characterisation of PATs as energy recovery devices for the
water distribution network in the laboratory [9]; the creation of predictive models that
estimate the performance of centrifugal pumps used as turbines through a one-dimensional
numerical code [10]; performance prediction models using the rotor–volute coincidence
principle [11]; or using articial neural networks [12]; a methodology for predicting the
performance of PATs operating at off-design conditions has been evaluated experimentally
and numerically [13]; a model for extrapolating the curves of turbine-like pumps from their
best efciency point (BEP) has also been developed [14]; the curves of centrifugal pumps
operating as turbines at different specic speeds have been studied experimentally [15];
and a methodology to extend the solution space beyond the traditional afnity curves of
commercially available PATs has been studied [16].

Another issue is the optimal location of PATs within the water network. Ref. [17]
developed a methodology that considers theoretical PAT curves, focusing on maximising
ER in irrigation networks. Other studies have also focused on the optimal selection of
PATs to maximise ER [18,19]. Meanwhile, Ref. [20] formulated a model for PAT selection
primarily aimed at minimising payback periods (PPs), considering costs associated with
electromechanical components, required civil works for installation and operation, and
other related expenses. Ref. [21] addressed the global optimisation of PAT location by
determining a xed number of PATs using a deterministic approach. However, several key
research gaps remain unaddressed: (i) Insufcient focus has been given to the determina-
tion of the optimal strategy for the selection of PATs using particle swarm optimisation
(PSO), despite its proven effectiveness in other engineering domains; (ii) Multiple objec-
tive functions, particularly the trade-off between maximising energy recovery (MER) and
minimising the payback period (MPP), have not been independently analysed. These
criteria are often treated jointly or simplistically; (iii) The interplay between ER and PPs
under dynamic economic conditions has yet to be thoroughly explored; and (iv) Limited
consideration has been given to how site-specic factors, such as irrigation management
practices and the investment capacity of farmers, affect the feasibility and prioritisation of
PAT implementation. Furthermore, few studies have proposed exible and context-aware
optimisation frameworks that simultaneously account for technical, economic, and opera-
tional constraints, which restricts the practical applicability of current models in real-world
agricultural systems.

To address these limitations, this work has developed a PAT selection model based on
the PSO algorithm, applied to nine EPPs pre-selected in a real pressurised irrigation net-
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work by [22]. The main contributions include: (i) A novel PSO framework for PAT selection
tailored to real hydraulic and economic conditions in irrigation systems; (ii) Separate analy-
sis of two independent objective functions: MPP and MER; (iii) Integration of economic
viability, including energy prices and installation costs, to reect real market dynamics;
(iv) Sensitivity analysis to evaluate the impact of uctuating external factors on the feasibil-
ity of PAT implementations; and (v) Application to a real irrigation district using ow rates
data, enhancing the model’s practical relevance and transferability. It offers a practical tool
for engineers, irrigation managers, and policymakers seeking to implement cost-effective
and sustainable ER strategies in rural pressurised water distribution systems, with the
aim of reducing energy dependence and enhancing the economic viability of irrigation
infrastructure. However, the methodology is currently limited to micro-scale installations,
and its application depends on the availability of EPPs in pressurised water networks.

The PSO algorithm was applied using actual ow rates data from the 2015 irrigation
season. This model was applied to irrigation sector II of the Canal del Zújar Irrigation
District (CZID) and a comparison of the results obtained by applying each of the objective
functions was made. The determination of the optimal PAT in both objective functions
is signicantly impacted by energy price volatility. Consequently, a sensitivity analysis
was conducted to examine uctuations in energy prices and alterations in raw material
costs. The PSO algorithm was re-applied for both objective functions using updated costs
from 2022 and 2023 across the nine EPPs. This analysis facilitates the identication of
trends and potential developments, as variations in total costs can inuence the decision-
making process and the efcacy of the selection criteria. The results were analysed, and the
feasibility of implementing these systems was evaluated for each objective function under
different economic scenarios.

2. Materials and Methods
2.1. Study Area

The data necessary for the development of this study were obtained from the Canal
del Zújar Irrigation District (CZID), located in Extremadura (Spain). The irrigated area
extends along the left bank of the Zújar River to its mouth in the Guadiana River, covering
an area of 20,870 ha. The area is divided into 10 pressurised irrigation sectors, Figure 1.

The data used in this work correspond to Sector II, which irrigates 2691 ha, 90% of
which is devoted to grow tomatoes, maize, and rice. The network corresponding to this
sector is made up of pipes with diameters between 80 and 1000 mm, which supply water to
196 hydrants located at heights varying between 250 and 285 masl. The network has been
designed to supply 1.2 L/s/ha on demand (water available 24 h per day), assuming 100%
simultaneity (all hydrants simultaneously opened) and a minimum pressure service at
hydrant level of 35 m. Annual rainfall, evapotranspiration and average temperature in 2024
were 322 mm, 1249 mm and 17 ◦C, respectively. This irrigation sector has a remote telemetry
system since the 2015 irrigation season that records hourly water demand through ow
meters installed on 196 hydrants [23]. This system provides ow information that is rarely
available at this level of spatial and temporal resolution in irrigation districts.
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Figure 1. Irrigation sectors of the Canal del Zújar Irrigation District (CZID), Spain. Source: own elab-
oration.

2.2. Identication of EPPs Pre-Selected in CZID

Using data of real water consumption in Sector II, it is possible to determine the hourly
ow rate through each pipe in the network and the hourly volume pumped throughout
the district, enabling the possibility to hydraulically assess the behaviour of the network
and analyse the excess pressure available through an EPANET hydraulic model of the
network [22]. This irrigation sector has already been the subject of previous studies, such
as the research developed by Crespo Chacón et al. [22], who validated a methodology for
determining ow rates in irrigation networks on demand using real ow data records.

From these ows and the EPANET hydraulic model, nine EPPs of the network were
identied (yellow dots is Figure 2), for which the ER potential was evaluated using PATs [20].
To identify the EPPs, the most unfavourable scenario was considered, namely 100% si-
multaneity. The EPPs were dened based on two criteria: Minimising the existing excess
pressure in the irrigation network to match its service pressure and reducing the pressure
in as many hydrants with excess pressure as possible. These ow data and the nine EPPs
identied in this preliminary study were used in this research. The location of the EPPs
is directly related to the topography of the terrain, the characteristics of the network, the
ow rates uctuations, and the operating conditions imposed by the irrigation district.
It is assumed that all hydrants are open and that ow rates follow consistent patterns
throughout the years, except during drought periods. In the case of pressurised irrigation
networks in at terrain, it is necessary to analyse the existing overpressures and apply the
proposed methodology to assess the feasibility of implementing such systems.
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Figure 2. CIZD Sector II network topology and excess pressure points (EPPs) studied. Source: own
elaboration.

2.3. Problem Approach

The objective of this methodology is to determine the optimal PAT size, according to
two different optimisation criteria: maximising energy recovery (MER) and minimising
payback period (MPP), for specic EPPs within a pressurised irrigation network. In an
optimisation process, the objective functions dene the goal by mathematically specifying
the variables and criteria to be maximised or minimised, such as the MER and MPP. To
achieve this, the algorithm adjusts the input variables to nd the optimum value, while
ensuring compliance with the constraints imposed by the decision variables.

2.3.1. Function Objective 1: Maximise Energy Recovery (MER)

This function aims to identify the PAT that ensures the highest energy production
during an irrigation season for each EPP studied, resulting in the highest possible ER
and, consequently, the greatest economic savings. The MER objective function, used to
determine the annual energy recovery (ERi), is dened in Equation (1). It is assumed that
the energy generated or recovered is destined for self-consumption, rather than the sale
of energy to the grid, considering that in many cases the installation does not have grid
connection points nearby [20].

MAXIMISEERi = ΣPi·t (1)

where Pi is the power produced during each operational period of the turbine, and (t)
represents the annual time scale. Since Pi depends on both the ow rate (Qi) and the
available head (Hi), it is necessary to establish a methodological framework to accurately
estimate these parameters.
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2.3.2. Function Objective 2: Minimise Payback Period (MPP)

The optimisation of the MPP objective function, dened in Equation (2), is designed
to identify the PAT that results in the shortest payback period at each analysed EPP. The
simple payback period is an economic index that shows how long it takes to recover an
investment, calculated as the ratio of the total installation costs (CPP2) to the economic
savings (ESi), as dened in Equation (2).

MINIMISEPP =
CPP2

ESi
(2)

Economic savings (ESi) are calculated as the product of the energy recovery and the
value of the tariff considered (Ti), according to Equation (3).

ESi = ΣPi·t·Ti (3)

To determine the total installation costs (CPP2) for each proposed PAT, as set out in
Equation (4), consider the cost of the civil works (CCW) necessary for correct operation
and the cost of the electromechanical components (turbine + generator) (CPAT), as in
Equation (5). The costs of PATs are determined using the equation proposed by Novara
and McNabola [6] for a pump with two magnetic pole pairs which depends directly on
QBEP and HBEP, which is referenced in other articles, including those by [17,20].

CPP2 = CPAT + CCW (4)

CPAT = 12, 864.77·QBEP·


HBEP + 949.43 (5)

To estimates the civil works costs, the methodology proposed by Crespo Chacón [20]
is followed. It is based on the estimated cost of the construction stages of the standard
installation of PATs in irrigation networks, as opposed to estimates of the costs of the civil
works based on the installed power or a percentage of the total installation cost. The chosen
criterion is considered to be more accurate, given that the works required vary little from
one case to another, beyond the specic circumstances of each site. The stages considered
in cost estimation are excavation, construction of the bypass, construction of the reinforced
concrete base, installation of the shelter, and backlling with excavated land.

2.4. Methodology for Flow Estimation and PAT Operating Rules in Irrigation Networks

To effectively implement the objective functions, it is crucial to determine the ow rates
(Qi) circulating through each EPP and their corresponding occurrence times. Therefore, the
algorithmic optimisation process will be applied independently to each of EPP using the
methodology proposed by [22] to obtain the ow rates and the time of occurrence for each
of them.

To guarantee the required operating conditions downstream ow demand of an EPP
while optimising ER, the method employed by Lydon et al. [9,24] was adopted. A bypass
conguration was proposed for the installation of a PAT, shown in Figure 3, comprising two
control valves (pressure reducing valve (PRV), ow control valve (FCV), or similar), one in
series with the PAT and one in parallel, to ensure that the desired downstream demands
are fullled with the required conditions in terms of pressure and ow.
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Figure 3. Typical pump as turbine (PAT) installation scheme. Source: own elaboration adapted
from [9,24].

The methodology for the estimation of the ow within the turbine simulates the
interaction between the Q–H system and PAT curves, as seen in Figure 4. The two operating
rules xed were as follows: (I) the ow demanded downstream of the EPP (Qi) would fully
circulate through the turbine if its value is lower than or equal to the maximum ow to
be turbined (QMAX) (this value was calculated obtaining the intersection between both,
PAT and system Q–H curves), Equation (6); (II) if Qi is greater than the maximum xed for
each scenario (QMAX), this ow would be diverted to the bypass (QBY−PASS). To obtain
the amount of QBY−PASS, the interaction between both system and PAT curves is required
again, as seen in Equation (7). The operating rules are as follows:

Operating rule I : i f Qi ≤ QMAX


QPAT = Qi

QBY−PASS = 0


(6)

Operating rule I I : i f Qi > QMAX


QPAT = Q,PAT

QBY−PASS = Qi −QPAT


(7)

Figure 4. Representation of a potential PAT ow-head curve for a hypothetical site, and working
pairs (QPAT , HPAT) for a random ow QI greater than the maximum QMAX in the Q–H space for
two operating rules xed, Operating rule1 (green colour) and Operating rule 2 (red colour). Source:
own elaboration adapted from [22].
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These operating rules ensure that the PAT functions within its optimal hydraulic
conditions while guaranteeing the required irrigation ow downstream.

2.5. Optimisation Process

From the preselected PATs, the optimal PAT for each EPP is determined using the PSO
algorithm applied to two single-objective functions. The input data used include the system
curves, the Qi values obtained from the data recorded for each EPP, shown in Figure 4, and
the average annual nal energy price including taxes and non-discriminatory terms (Ti).

The algorithm simulates the hydraulic behaviour of the system under varying oper-
ating conditions by applying Qi and the estimation of the Hi for each possible ow rate
Qi. To estimate Hi and Q–H characteristic curves, the approach proposed by Barbarelli [25]
is used, shown in Equation (8). This model, developed as an alternative to the approach
by Derakshan and Nourbakhsh [15], is based on experimental data from 12 tested PAT
and provides a direct estimation of the Hi for each Qi, enabling the generation of Q–H
characteristic curves each candidate PAT conguration.

Hi
HBEP

= 0.922


Qi
QBEP

2
− 0.406


Qi

QBEP


+ 0.48 (8)

Each (Qi − Hi) pairs has an associated relative efciency (ηi) that determines how
effectively the PAT converts hydraulic energy into mechanical energy. Novara and McN-
abola [14] proposed a model, through the extrapolation of 116 measured PAT characteristic
curves, to estimate the relative PAT efciency (ηi) as a function of ow rate, shown in
Equation (9).

ηi = 0.5197


Qi
QBEP

3
− 2.3328·


Qi

QBEP

2
+ 3.0931·


Qi

QBEP


− 0.2757 (9)

where (Qi) is the relative ow and (QBEP) is the ow at the BEP.
The Pi for each pair of (Qi − Hi) was obtained using Equation (10), assuming that

the PAT operates at its BEP, where (QBEP, HBEP) represent the optimal ow and head
conditions. Following [8,20], we assumed that HPAT = HBEP and ηi = efciency at BEP,
for which the maximum overall efciency has been taken as 0.55, considering 65% for the
PATs + generator efciency and 85% to account for hydraulic regulation losses.

Pi = 0.55·QPAT ·HPAT ·γ·ηi (10)

where γ is the specic weight of water and ηi is the relative efciency.
For very low rates, this relative efciency has negative values, for which the device

should be off, and no ow would be turbined.
Depending on the selected objective function, the algorithm either evaluates total

annual energy production or the economic feasibility of the PAT installation. For the
MER, the algorithm returns the total annual energy generated by the system, as seen
in Equation (1), maximising turbine output based on hydraulic conditions and system
performance. For the MPP, the objective function calculates the total investment cost, as
seen in Equation (4), (including turbine, generator, and civil works), and annual revenue
based on electricity tariffs, as seen in Equation (3). The ratio of cost to income is minimised
to determine the conguration with the shortest payback period, as seen in Equation (2).
Figure 5 presents a owchart summarising the steps of this methodology.
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Figure 5. Optimisation model owchart for determining the optimal PAT for each EPP. Source: own
research.

2.6. Particle Swarm Single-Objective Optimisation

The PSO algorithm is a heuristic optimisation technique rst created by Kennedy and
Eberhart in 1995 [26]. This approach is commonly employed in scientic and engineering
disciplines to identify the minimum or maximum of a problem. It operates based on the
collective behaviour of animal groups, such as schools of sh, ocks of birds, and swarms of
bees. The movement of each individual results from a combination of individual decisions
and group behaviour. A collection of particles moving through the parameter space that
describes their direction, velocity, and acceleration can be characterised as the possible
solutions to the optimisation problem [27]. Within the swarm, each particle signies
an individual entity and possesses a position solution vector, while the best solution to
the problem is dened as the most optimal position discovered by the swarm, which is
accomplished by each particle. To identify the most effective local solution, the swarm
particles are divided into subsets called neighbourhoods. Each particle in a neighbourhood
possesses knowledge of the optimal position within its own subset. Interactions between
particles are governed by the neighbourhood, therefore inuencing information ow
throughout the swarm and impacting the algorithm’s convergence [28]. Therefore, it
should be noted that heuristic algorithms, including PSO, may become trapped into a local
minimum or maximum, depending on the conguration and complexity of the problem.

The rst step in the process involves creating an initial swarm of h random par-
ticles. At each iteration k, each Pl consists of four components: one is the position
Xl(k) = {xl1, . . . , xln}, which represents a specic combination of variable values; the
value of the objective function at the position where the particle is located; a velocity
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Vl(k) = {vl1, . . . , vln}, indicating how and where the particle is moving; and a record
of the best global position the particle has reached so far Gl(t) = {gl1, . . . , gln}. Each
particle is evaluated using the objective function, and its position and velocity are updated,
providing the algorithm with optimisation capabilities. If a stopping criterion is not met,
the procedure is repeated, starting from the evaluation of the particles.

To update both the position and velocity of each particle in the swarm at each iteration
k, the following equations are used:

vl(k+ 1) = wvl(k) + c1r1[x̂l(k)− xl(k)] + c2r2[g(k)− xl(k)] (11)

xl(k+ 1) = xl(k) + vl(k+ 1) (12)

where vl(k+ 1) is the velocity of particle l at time k + 1, i.e., the new velocity; vl(k) is
the velocity of particle l at time k, i.e., the current velocity; w is the inertia coefcient,
which adjusts the particle velocity by either reducing or increasing it; c1 is the cognitive
coefcient; r1 is a random vector with values between 0 and 1, with a length equal to that
of the velocity vector; x̂l(k) is the best position the particle l has reached up to that point;
xl(k) is the position of particle l at time k; c2 is the social coefcient; r2 is a random vector
with values between 0 and 1, with a length equal to that of the velocity vector; and g(k) is
the position of the entire swarm at time k, representing the best global value.

2.7. Sensitivity Analysis

The determination of the optimal PAT in both objective functions is signicantly
impacted by energy price volatility. Consequently, a sensitivity analysis was conducted.
The objective of this sensitivity analysis is to evaluate the impact of two key sources of
variability on the total costs: electricity tariff uctuations and changes in construction and
PAT costs in Spain.

In the case of Spain, electricity pricing is subject to market-driven variations, inu-
enced by the wholesale market (OMIE) regulatory adjustments, and taxation policies.
Simultaneously, construction and PAT costs are affected by material price ination, labour
costs, and market conditions, which can alter investment requirements. Given the potential
impact of these uctuations on decision-making processes, this sensitivity analysis aims
to assess their inuence on total costs, identify trends, and evaluate the robustness of the
selection criteria under different scenarios.

The price of electricity in Spain has been market-driven since July 2009, except for
small consumers [29]. This market liberalisation, coupled with rising energy costs, led to
signicant increases in energy bills for farms and irrigation communities by 2010, with
a 50% rise in contracted power costs and a 200% increase in consumption costs [30].
Corominas [29] highlights the rapid annual growth in energy costs for irrigation, which can
be restrictive amid sudden energy price hikes. Since 2020, due to post-pandemic recovery
and geopolitical conicts such as the Russia–Ukraine war, energy price surges have led to
increase variable term costs in contracts negotiated by Irrigation Districts, with a trend of
continued rises in future contracts. According to OMIE [31], the Spanish electricity market
regulator, the average energy price in 2022 reached 167.52 euros/MWh, 2.8 times higher
than the 18-year average, with a peak of 700 euros/MWh.

The Spanish average annual nal energy price, including taxes and non-discriminatory
energy terms (Ti), was calculated according to Equation (13), where i represents the year
analysed, comprises a xed term for power (PPi, f ixed), and a variable term for energy
consumption (PEi,variable), with prices uctuating overtime. Taxes applied at the national
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level and those specic to the agricultural sector have been considered, including all
components that contribute to the nal energy price.

Ti = PPi, f ixed + PEi,variable (13)

The variable electricity price (PEi,variable) consists of energy production costs (Cproduction),
access tariff costs (Caccess tari f f ), and additional expenses like the marketer’s prot margin,
equipment rental, or taxes, as seen in Equation (14).

PEi,variable = Cproduction + Caccess tari f f (14)

The proposed scenarios are heavily inuenced by price uctuations in a volatile energy
market, needing a sensitivity study on energy prices and raw material cost variations to
analyse trends and inform decision-making and selection criteria effectiveness.

The following considerations will be taken for the calculation of the energy price: The
average nal energy prices without taxes (FEi) of the wholesale market (OMIE) [31] will be
taken as a reference for the calculation assuming a uniform distribution in consumption,
independent of the tariff periods (TPn); the standard Special Electricity Tax (IEE) and its
reductions in agriculture; value-added tax (VAT); energy term (Eterm) depend on usage
and periods. The weighted average value on a time and TPn, where n represents the type
of periods applied, is calculated for an assumed constant use, which will be added to the
average nal energy price.

Ti = ((FEi + Eterm(Pn))·IEE)·VAT (15)

In order to determine the added toll (p f j) per energy term (Eterm) based on the
TPn applied, where j represents the number of added tolls, the average cost of each
TPn was determined (Ci, p f ). We have taken the weighted average, as in Equation (16),
between the annual hours of each p f j (Hannual) and the p f j for each TPn for an assumed
constant usage resulting in an average price of Eterm non-discriminated. The Eterm is ob-
tained with an annual time scale by dividing the average by the total hours of the year, as
in Equation (17).

Ci,p f =

n
∑

i = 1
(Hannual ·p f j



n
∑

i = 1
p f j

(16)

Eterm =
Ci,p f

8760 (h)
·1000 (17)

The variation in CCW has been determined through the cost index of the construction
sector of the Spanish Ministry of Transport, Mobility and Urban Agenda, which shows
the percentage variation of civil works costs taking 2015 as the relative base year, and the
costs were extrapolated considering these percentages and the cost of civil works in 2015
proposed by [20]. For the variation in CPAT , a market price evolution study was carried
out by analysing the sales prices of more than 15 pumps, from three different commercial
companies and with different power ratings and characteristics.

3. Results
The optimisation process was carried out independently for each of the nine EPPs

using actual ow uctuations corresponding to the year 2015. For each EPP, the irrigation
ow rates (Qi) were obtained from records collected from the 2015 telemetry system.
Additionally, system curve coefcients for each EPP were obtained from the hydraulic
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model, shown in Table 1. The lower limits were set at 10 m for the head and 10 l/s for
the ow rate, while the upper limits, which are dened for each EPP, were set according
to the real maximum values recorded by CZID in 2015, as shown in Table 1. The lower
limits were chosen to prevent the effective operating range of each PAT, based on heuristic
considerations.

Table 1. Input variables of the PSO algorithm.

EPP
System Curve Coefcients Particle Swarm

(Quadratic Equation: c + bx + ax2) Lower Limits Upper Limits

1 [60.616; −0.015; −0.0002] [10.0; 10.0] [172; 16.94]
2 [71.639; 0.0113; −0.0003] [10.0; 10.0] [240.31; 21]
3 [74.053; 0.0097; −0.0003] [10.0; 10.0] [320.01; 14.1]
4 [76.655; −0.0541; 0.00002] [10.0; 10.0] [228.06; 31.08]
5 [57.332; −0.023; −0.0002] [10.0; 10.0] [115.27; 16.89]
6 [48.045; −0.0078; −0.00006] [10.0; 10.0] [270.36; 7.06]
7 [68.237; 0.0194; −0.0002] [10.0; 10.0] [240.61; 23.2]
8 [69.654; 0.0177; −0.0002] [10.0; 10.0] [326.47; 17.026]
9 [64.782; −0.0069; −0.00003] [10.0; 10.0] [365.29; 23.96]

Source: own research.

During the process, the energy price (Ti) of 88.26 EUR/MWh (2015) was used for the
income calculations. The optimisation was repeated for each of the EPPs based on the
tariffs for 2022 and 2023, with the goal of minimising the PP and maximising the annual
ER. The PSO algorithm was performed using h = 50 particles (Pl) and 100 iterations k.
Adaptive inertia weights (w) of 0.8, cognitive coefcients (c1) of 1, and social coefcients
(c2) of 2 were employed, along with an early stopping criterion based on a convergence
tolerance of 10−3 over ve consecutive rounds and performance stagnation.

3.1. Particle Swarm Single-Objective Optimisation Results

Once all the data have been entered, the computation and optimisation process are
carried out independently by means of a particle swarm algorithm for each EPP studied,
returning the optimum position and value data for each objective function, as shown in
Table 2. The results obtained correspond to the year 2015 and predict energy savings in the
range from 9554.86 kWh (EPP5) to 49,828.68 kWh (EPP3) for the MER function, and payback
periods ranging from 12.92 years for EPP5 to 3.01 years for EPP3 for the MPP function.

Table 2. Results of the algorithm for the objective functions in the year 2015.

Objective Functions

EPP

MER MPP

Best Position Best Value Best Position Best Value

Flow Rate (L/s) Head (m) ER (kWh) Flow Rate (L/s) Head (m) PP (Years)

1 76.41 16.94 19,357.85 56.95 13.76 6.98
2 86.76 21.00 42,988.30 66.65 18.36 3.42
3 112.21 14.10 49,828.68 87.22 14.10 3.01
4 84.04 31.08 33,116.07 55.77 20.90 4.45
5 54.17 16.89 9554.86 40.95 14.17 12.92
6 87.07 7.06 10,421.65 72.06 6.78 12.14
7 82.01 23.20 34,225.61 60.60 18.62 4.26
8 107.37 17.03 45,442.89 81.24 15.83 3.37
9 144.42 23.96 43,992.15 89.38 14.06 3.82

Source: own research.
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To compare the results of the two objective functions, the ER and PP values associated
with the two operating points of each EPP listed in Table 2 are shown in Figure 6: the values
of the annual savings in euros, Figure 6a; the investment required to carry out the designed
installation, Figure 6b; the energy recovered for each objective function, Figure 6c; and
the payback period was calculated for this function to compare it with the results of both
objective functions, Figure 6d. The variation in energy recovered between the objective
function MER and MPP ranges from 1597.57 kWh to 18,394.05 kWh per year. The variation
in PPs between both functions ranges from 0.14 to 0.7 years.

Figure 6. Comparison between the results of the two objective functions in 2015: (a) Annual economic
savings in euros/year; (b) Total investment in euros; (c) Recovered energy (ER) in kWh; (d) Payback
period (PP) in years. Source: own research.

3.2. Sensitivity Analysis Results

The methodology described in Section 2.7 was followed to estimate the annual evolu-
tion of electricity tariffs, as seen in Table 3, and the costs of civil works and electromechanical
components PATs, as seen in Figure 7. As can be seen in Table 3, the energy price is relatively
constant in the years 2015 to 2019. In 2020, the energy price is slightly lower, possibly due
to the recovery of COVID-19, and from 2021 the price shoots up to double the nal price,
and in 2022 it almost triples, returning to near post-pandemic levels in 2023.

The study of the cost of the variable term of the average energy price was extended
to a period between January 2009 and December 2023 in Spain. Reference is made to the
average nal prices of energy contracted by marketers on the free market (OMIE) [31]. The
energy term tariff tolls (p f j) contracted by CZID were divided into six tolls, j = 6 (P1, P2,
P3, P4, P5, and P6). There were two tariff periods (TPn) contracted by CZID (n = 2): tariff
6.0A (applied until 2020 in irrigation) and 6.1TD (applied from 2021).
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Table 3. Average annual nal price of energy including taxes and non-discriminatory energy terms
(Ti).

Year FE
(EUR/MWh)

Eterm
(EUR/MWh) IEE (%) VAT (%) Ti

(EUR/MWh)

2015 62.85 6.55 5.11 (−85% BI) 21 88.26
2016 48.43 6.55 5.11 (−85% BI) 21 69.92
2017 60.54 6.55 5.11 (−85% BI) 21 85.32
2018 64.35 6.55 5.11 (−85% BI) 21 90.17
2019 53.41 6.55 5.11 (−85% BI) 21 76.25
2020 40.39 6.55 5.11 (−85% BI) 21 59.69
2021 118.65 9.00 0.5 (−85% BI) 21 155.24
2022 221.87 9.00 0.5 (−85% BI) 21 259.45
2023 100.02 9.00 0.5 (−85% BI) 21 132.59

Source: own research.

Figure 7. Variation of Construction Index of the construction sector and index of the PAT (2015–2023).
Source: own research.

The VAT rate of 21% in force in Spain was considered. An 85% reduction of the taxable
base (BI), which corresponds to the amount on which taxes are calculated in Spain, is
applied to agricultural irrigation [32]. The standard Special Electricity Tax (IEE) in Spain is
5.113%. However, due to government measures implemented to mitigate high electricity
prices, its value was reduced to 0.5% between 2021 and 2023 [33].

The particle swarm optimisation algorithm was also applied to each EPP considering
updated costs for 2022 and 2023, and the results are shown in Table 4.

Table 4. Results of the algorithm for the objective functions in the year 2022 and 2023.

Objective Functions MER MPP

EPP
Best Value 2022 Best Value 2023 Best Value 2022 Best Value 2023

ER (kWh) ER (kWh) PP (Years) PP (Years)

1 19,357.85 19,357.85 3.21 6.39
2 54,963.21 42,988.3 0.88 3.15
3 49,828.68 49,828.68 1.38 2.78
4 33,116.06 33,116.07 2.05 4.09
5 9554.86 9554.85 5.96 11.76
6 41,603.89 41,603.89 5.59 11.08
7 34,225.61 34,225.61 1.96 3.91
8 45,442.89 45,442.89 1.55 3.11
9 43,992.15 43,992.15 1.75 3.53

Source: own research.
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4. Discussion
The results obtained validate the effectiveness of the algorithm as an optimisation

method, yielding logical and convincing results for each EPP studied. The algorithm
demonstrated rapid convergence (approximately 1 s per EPP and objective function) with a
limited number of iterations (100 iterations per objective function), conrming its suitability
for the selection of PAT congurations under single-objective optimisation criteria.

When comparing the values obtained in this study to those from other optimisation
methods, such as genetic algorithms or linear programming approaches used in similar
PAT installations, the ER values obtained here are generally within or above average. For
instance, while typical PAT installations in irrigation systems recover between 10,000 and
30,000 kWh/year [34–36], this study reports several cases (e.g., EPP2, EPP3, EPP8, EPP9)
with ER values exceeding 40,000 kWh/year, indicating strong optimisation performance.
Only EPP5 and EPP6 display lower ER values (~10,000 kWh/year), as seen in Figure 6c,
which are at the lower end of the expected range, primarily due to unfavourable hydraulic
conditions and ow characteristics. In the case of EPP6, it is in a at area with a high ow
rate, as it is near the network’s inow point, but with low available pressure. At EPP5, the
ow diverted to the branch that supplies downstream demand is small, even though the
available pressure is similar to that at other points such as EPP1, EPP3, and EPP8, which
negatively affect ER.

In terms of economic viability, the PP values obtained through the MPP objective
function are relatively short in most cases, ranging from 3 to 5 years, particularly in EPP2,
EPP3, and EPP8. These values are considered highly competitive when compared with
other small hydropower projects [36,37], which often present PP values between 5 and
10 years. The exception is EPP5 and EPP6, where PP exceeds 10 years under 2015 conditions,
reecting suboptimal investment opportunities unless energy prices increase, or installation
costs are reduced.

However, when updated energy prices for 2022 and 2023 are incorporated into the
model (Table 4), the scenario changes considerably. Higher electricity prices lead to a
signicant reduction in PP across all EPPs, most notably in 2022, where PPs are shortened to
less than 6 years even in previously unviable cases like EPP5 and EPP6. This shift highlights
the importance of including a temporal economic analysis in PAT project assessments, as
external market conditions can drastically affect project viability. To illustrate this, EPP1
was selected due to the marked differences observed between the MER and MPP objective
functions under varying economic scenarios, as shown in Figure 8, using energy price and
cost data from both 2015 and 2022. A 20-year average operational lifespan was considered
for this type of installation in the analysis.

As shown in Figure 8a, in 2022, both objective functions yield similar PP values
(approximately 6 years and 7 years) relative to the installation’s lifespan. However, there is
a substantial difference in ES, amounting to nearly EUR 58,000 (EUR 83,716 vs. EUR 25,957)
after 20 years of investment. This highlights the superiority of MER in terms of long-term
protability, provided the investor can afford higher initial investment. Indeed, Figure 8b
shows that the investment cost difference in 2022 (CPP2) is EUR 5087.00 in favour of MPP.

Conversely, a reverse trend in energy prices, returning them to values similar to those
of 2015, combined with a decrease in installation costs, would make the MPP criterion
more favourable. In this scenario, the difference in PP, shown in Figure 8a, narrows to
similar values between 7 and 8 years, while the difference in ES to just over EUR 5000 (EUR
21,684 vs. EUR 16,374) between functions after 20 years. The difference in CPP2 between
both functions in 2015 is EUR 3712.00 (see Figure 8b). Taking costs into account, the nal
benet would be around EUR 1598.00. This further reduces the relative advantage of
MER, particularly when accounting for ination and equipment depreciation. Under these
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conditions, the break-even point between the two options is reached in year 8, with net
savings of only EUR 1177. This makes it difcult to justify the higher investment required
for MER.

Given the sensitivity to energy and civil works costs, a multi-objective function could
provide a single balanced result, while single-objective functions allow for the analysis of
different outcomes that can be adapted to the context or convenience of various options
(market trends, the economic capacity of the investor, sensitivity to carbon footprint,
etc.), enabling the most suitable decision for each situation and expanding the range of
possible solutions.

Figure 8. Economic analysis of maximising energy recovery (MER) and minimising the payback
period (MPP) functions for EPP1 in the period 2015–2022: (a) Economical savings after 20-year PPs
in 2015 (solid lines) and 2022 (dashed lines); (b) Total investment cost in 2015 and 2022. Source:
own research.

The developed model serves as a practical decision-making tool for identifying the op-
timal PAT conguration at hydrants with excess pressure in pressurised irrigation networks.
By integrating hydraulic and economic criteria through single-objective functions, it enables
the evaluation of protability, investment effort, and ER. This allows stakeholders to tailor
decisions to specic contexts—whether prioritising short PPs, maximising long-term ER, or
adapting to market trends and investment capacities.

5. Conclusions
This research presents a single-objective optimisation framework using a PSO algo-

rithm for the optimal selection and sizing of PAT-based ER systems at EPPs in pressurised
irrigation networks. Two single-objective functions were analysed: maximising energy
recovery (MER) and minimising payback period (MPP). The methodology proved effective,
delivering logical and robust results, and enabling a comparative evaluation of technical
and economic criteria under real operating conditions.

The results obtained for the reference year 2015 demonstrated substantial ER potential,
with several EPPs achieving values above 40,000 kWh/year and competitive PPs below
5 years in most cases. However, specic cases such as EPP5 and EPP6 showed limited
ER and extended PPs exceeding 10 years, and are not considered economically viable,
highlighting the need for individualised assessments. The trade-off analysis between MER
and MPP revealed that prioritising MER often incurs higher initial costs but results in only
marginal increases in PPs (e.g., EPP3 and EPP8), making this strategy preferable when
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long-term energy yield is a priority and nancing is accessible. Conversely, in unfavourable
hydraulic scenarios, the MPP criterion becomes more suitable.

To address the economic uncertainty of recent years, a sensitivity analysis was con-
ducted by incorporating updated energy tariffs and cost indices for civil and electrome-
chanical works from 2022 and 2023. The results reveal a dramatic improvement in project
viability due to rising energy prices, with PPs falling below 6 years across all EPPs in 2022,
even for previously unfeasible cases like EPP5 and EPP6. These ndings emphasise the
necessity of including time-dependent economic variables in feasibility studies, particularly
in volatile energy markets.

The advancements proposed in this research include the use of a exible optimisation
framework capable of independently evaluating multiple objective criteria; a comparative
strategy for selecting PAT installations based on technical–economic trade-offs; and an
extended temporal sensitivity analysis that highlights how evolving market conditions
can radically alter investment decisions. These contributions support a more adaptive,
cost-effective, and context-aware deployment of PATs in water–energy nexus projects.
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Abbreviations
The following abbreviations are used in this manuscript:

BEP Best Efciency Point
CZID Canal del Zújar Irrigation District
Cpp2 Total installation costs
Ccw Civil works costs
CPAT Electromechanical components costs (turbine + generator)
Cproduction Energy production costs of the PEi,variable

Caccess tariff Access tariff costs of the PEi,variable

Ci, p f Average cost of each TPn
EEP Excess pressure point
ER Energy recovery
ES Economic savings
Eterm Non-discriminatory term depending on the use and TPn of the contracted electricity



Technologies 2025, 13, 233 18 of 20

FEi Average annual nal energy price of wholesale electricity set by free-market traders
HBEP Best efciency point head
HPAT PAT head
Hi Available head downstream of the EPP
Hannual Annual hours of each pfj applied
i Year analysed
IEE Special electricity tax in Spain
j Represents the number of added tolls
MER Maximise Energy Recovery Objective Function
MPP Minimise Payback Period Objective Function
n Type of period applied
PAT Pump-as-turbine
PP Payback period
PSO Particle Swarm Optimisation
Pi Power produced for each pair of Qi-Hi
PPi, xed Fixed electricity price for contracted power
PEi,variable Variable terms of electricity price for energy consumption
pfj Added toll based on the applied Pn
Qi Flow demanded downstream of the EPP
QMAX Maximum ow rate to be turbined by the PAT
QB-P Bypass ow rate
QBEP Best efciency point ow rate
QPAT Flow circulates through the turbine
t One-year period of analysis
Ti Average annual nal energy price including taxes and non-discriminatory Eterm

TPn Base period according to the contracted tariff
VAT Value-added tax
γ Water specic weight
ηi Relative performance of the ow value in the PAT
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